


# FRA51615

From power electronics such as inverters and to servo control, evaluation of electronic components and even advanced bioresearch.



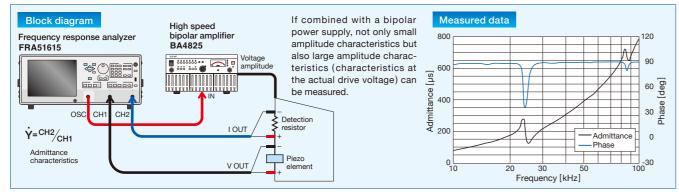
Significantly improved performance, functionality, and ease of use for many applications.

- Frequency range
  10 µHz to 15 MHz
  Testing speed
  0.5 ms/point
  Fundamental accuracy
  Gain ±0.01 dB, Phase ±0.06°
  Isolation / Maximum input voltage
  600 V CAT II / 300 V CAT II
  Maximum test voltage
  600 Vrms
- Sequence measurement
- Marker search function
- Group delay measurement
- Phase control during frequency changes
- Load correction
- Port extension function
- Potential slope elimination



## **NF Corporation**

| Loop Characteristics               | Servo Characteristics | Transfer Characteristics | Impedance       |
|------------------------------------|-----------------------|--------------------------|-----------------|
| Admittance                         | PSRR                  | PLL Response             | Characteristics |
| Vibration Transfer Characteristics |                       | Electrochemical I        | Impedance (EIS) |

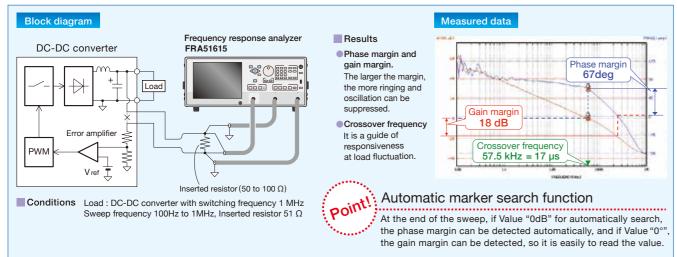

## NF FRAs are the best choice, when accuracy of frequency response measurements matters

# Applications

#### Impedance measurement

#### Measurement of resonance characteristics of piezo element

Unlike the FFT analyzer, the FRA51615 can make the frequency resolution of a specific frequency range finer and has high phase accuracy, so it is possible to know the characteristics near the resonance point in detail.




Characteristics measurement of multilayer ceramic capacitor with applied voltage Internal impedance measurement of battery

## Gain-phase measurement

### Loop gain measurement of power supply circuit

The loop gain characteristics of the DC-DC converter are measured under actual driving conditions, and the stability of the circuit is quantitatively evaluated from the phase margin and gain margin. With 600 V CAT II / 300 V CAT III, It can also be used to measure non-isolated PFC circuits connected to a commercial power supply.



Wireless charging efficiency measurement Filter input / output characteristics measurement

Vibration analysis

# Specifications & Functions



### Specifications and Functionality to Ensure Reliable and Highly Accurate Measurements

#### Measurable frequency range 10 µHz to 15 MHz

Supports low frequencies of 10 µHz all the way to 15 MHz. Resolution has also been increased to 10 µHz. Ultra-low frequencies required for electromechanical impedance testing is also supported.

**Fundamental accuracy** Gain ±0.01 dB, Phase ±0.06°

Highly accurate measurements are achieved with digital Fourier conversion and self-calibration functionality. \*Accuracy varies depending on testing conditions.

#### Isolation 600 V CAT II / 300 V CAT II

The oscillator output (OSC) and 2 analysis inputs (CH1 and CH2) are isolated from the chassis. Terminals are also isolated from each other. Available isolation ratings include 600 V CAT II and 300 V CAT III.

For the loop and gain testing of power circuits such as high-voltage inverters and PFC circuits, this further expands the range of applications supported by FRAs.

#### Automatic, high-density sweeps

The FRA51615 supports high-density testing of up to 20,000 points as well as automatic adjustment of frequency density specifically during intervals of sudden changes in measurement data.

#### Integrator

The data integrator is used to remove the effects of noise while measuring. The period of repeated testing is configured in cycles or time.

#### **Delay function**

This function delays the start of testing to reduce error caused by transient responses during frequency changes. A function has also been added to delay the start of testing only for start of sweep testing or spot testing.

#### Interfaces GPIB, USB, LAN, RS-232, VGA

With these interfaces, automated testing systems can be built. A VGA port is also included on the rear to connect with external monitors. Refer to the description of the right figure of the rear side of the device for more information on other output ports.

> External reference clock in/out 10 MHz Synchronize with other devices

## **Frequency Response Analyzer FRA51615**

# FRA51615

## Newly Designed to Support Many **Testing Scenarios**

#### **Testing speed** 0.5 ms/point

Maximum sweep speed of 0.5 ms/point is definitely fast. This device can help reduce production line tact times.

#### Dynamic range 140 dB

A larger dynamic range has been achieved with a high-resolution A/D converter and auto ranging functionality that optimizes testing ranges per frequency measurement point. Highly accurate measurements can be taken even when changes occur during testina

#### Auto range

This feature automatically tracks the input signal level so that the range is constantly optimized during testing. Once noise that exceeds the range is detected, the system automatically sets a larger range. Measurement data will not become saturated within specific ranges. It is also possible to select a fixed range in order to avoid discontinuities in the measurement values associated with range changes.

#### Amplitude compression

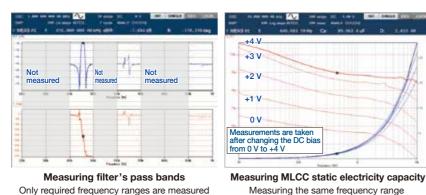
To prevent saturation and damage of test devices, oscillator levels are controlled to match the amplitude level of the test device.

#### Automatic integrator

Integrals are repeated until variation in measurements due to noise lower than a preconfigured value.

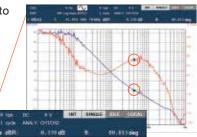
#### **Differential and integral operations**

This feature calculates differentials, second-order differentials, integrals, and double integrals for the time domain of measurement data. For example, this is useful for calculating displacement, speed, and acceleration from acceleration sensor or laser doppler vibrometers.




## Frequency Response Analyzer FRA51615

#### Increasing testing efficiency!


#### Sequential testing

Sweep measurements can be performed in accordance with a numerical order that is read from configuration memory. The frequency range can be divided up to 20 parts per sweep so that these different frequency ranges can be measured using different amplitude and integral settings. This is useful in accurately measuring specific frequency ranges of filters, piezoelectric elements, and so on. This is also useful in measuring components with a bias dependency, such as multilayer ceramic capacitors (MLCC), inductors, and transformers.



Marker search functionality

In addition to moving to a marker and reading the value, the system can automatically search for points matching configured criteria.



#### Phase control during frequency changes

Frequencies are changed at the timing at which the phase of the oscillator output signal is at 0°. As a result, there are no DC components from the start to the end of the frequency sweeps, which enables the impedance of batteries to be tested without changing the charge/discharge state. And the frequency response of high-pass filters (HPF) can be measured without any DC transient responses.

#### **Error correction**

Open/Short/Load Correction, Port Extension Functionality, Potential Gradient Removal, and Equalization

#### •Open correction/short correction

Corrects errors in measurements due to stray admittance of open circuits and residual impedance of shorted circuits. [Impedance testing]

Load correction

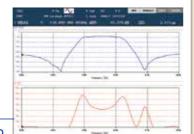
Test devices of known values are used as reference impedance to correct related errors. [Impedance testing]

#### Port extension functionality

Corrects errors due to propagation delays when long cables are used. [Impedance testing]

#### Potential gradient removal

Amplitude and phase of sine waves and ramp waves are individually detected given that test signals are composed of sine waves and ramp waves (fluctuating potential waveforms). This removes the effects of changes in potential that accompany charging/discharging cycles of batteries. [Impedance testing]


#### Equalization

Corrects measurement-related errors by measuring the frequency response of externally connected sensor, cables, and other components involved in measurements before-hand. [Gain/phase testing]

\*Correction features used for the types of measurements indicated in [].

#### Group delay measuring

This system can display group delay (GD, phase differentials between input and output by frequency) used to evaluate reproducibility of waveforms of filters and other electronic components.



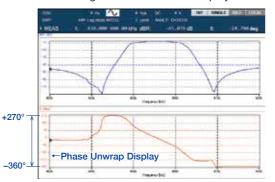
at different test conditions

#### Graph display

#### SPLIT display

Both a SINGLE mode that displays one graph per page and a SPLIT mode that displays an upper graph and lower graph are available.

#### Data trace


A reference data trace (REF) and a measurement data trace (MEAS) can be drawn as overlays.



#### Phase unwrap display

Displays the phase continuously without using  $0^\circ,\,180^\circ,\,and$   $360^\circ$  as cross-over points.

Phases exceeding  $\pm 360^{\circ}$  can also be displayed.



| Specifications |
|----------------|
| Oscillator     |

| • • • • • • • • • • • • • • • • • • • |                                                                                                                                      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Connector                             | Insulated BNC (front panel, OSC)                                                                                                     |
| Frequency                             | 10 µHz to 15 MHz                                                                                                                     |
|                                       | Setting resolution : 10 µHz                                                                                                          |
|                                       | Accuracy : ±10 ppm                                                                                                                   |
| AC signal                             | 0 to 10 Vpk                                                                                                                          |
| amplitude                             | Setting resolution : 3 digits or 0.01 mVpk,                                                                                          |
|                                       | whichever is greater                                                                                                                 |
| DC bias                               | -10 V to +10 V, Setting resolution : 10 mV                                                                                           |
| Output impedance                      | 50 Ω ±2% (1 kHz)                                                                                                                     |
| Maximum output                        | Voltage : ±10 V                                                                                                                      |
| (AC + DC)                             | Current : ±100 mA                                                                                                                    |
| Sweep                                 | Sweep density : 3 to 20,000 steps/sweep                                                                                              |
|                                       | Sweep type : Linear or log, selectable                                                                                               |
|                                       | Sweep time : Fastest 0.5 ms (per frequency point)                                                                                    |
| Output control                        | QUICK : immediately changes to the set voltage or to 0 V                                                                             |
|                                       | SLOW : changes to the set voltage or to 0 V gradually over a period of about 10 seconds                                              |
|                                       | Function for turning off at 0° phase                                                                                                 |
|                                       | Function for changing the frequency at 0° phase                                                                                      |
|                                       | It is possible to turn the AC and DC on / off at the same time or to turn off the AC only.                                           |
|                                       | It is possible to turn on automatically at the<br>start of measurement and to turn off auto-<br>matically at the end of measurement. |
| Isolation                             | 600 V CAT II or 300 V CAT III<br>(BNC grounded to the enclosure)                                                                     |
| Capacitance relative to the enclosure | 150 pF or less                                                                                                                       |
| DC BIAS OUT                           | Connector : BNC                                                                                                                      |
| (rear panel)                          | Setting range : -10 V to +10 V                                                                                                       |
|                                       | Output resistance : 600 Ω ±2%                                                                                                        |

#### Analysis input

| Analysis input                        |                                                                                                                 |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Input channels                        | 2 (CH1, CH2)                                                                                                    |
| Connectors                            | Insulated BNC                                                                                                   |
| Input impedance                       | 1 MΩ ±2%, 20 pF ±5pF                                                                                            |
| Measurement range                     | 10 ranges (30 m/100 m/300 m/1/3/10/30/<br>100/300/600 Vrms), and AUTO.<br>CH1 and CH2 can be set independently. |
| Maximum input voltage                 | 600 V CAT II or 300 V CAT III                                                                                   |
| Maximum                               | 600 Vrms                                                                                                        |
| measurement voltage                   | (the bundled signal cable is used)                                                                              |
| Over-level detection                  | 0 to 600 Vrms (over lamp lights, buzzer warning sound, stop sweep measurement)                                  |
| Dynamic range                         | 140 dB (10 Hz to 1 MHz)<br>80 dB (1 MHz to 15 MHz)                                                              |
| IMRR                                  | Isolation mode rejection ratio<br>120 dB or more (DC to 60 Hz)                                                  |
| Isolation                             | 600 V CAT II or 300 V CAT III<br>(BNC ground to the enclosure)                                                  |
| Capacitance relative to the enclosure | 200 pF or less                                                                                                  |

| V Measurement processing   |                                                                                                                                                                                                                    |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement<br>operations  | UP SWEEP [In order of increasing frequency]<br>DOWN SWEEP<br>[In order of decreasing frequency]<br>SPOT [At the current frequency (no sweep)]<br>REPEAT [Repeatedly measurements]<br>SINGLE [A single measurement] |
| Integration<br>function    | This function performs integration on mea-<br>surement data to remove the effects of noise.<br>0 to 9,990 s or 1 to 9,999 cycles                                                                                   |
| Measurement delay function | This function delays the beginning of a mea-<br>surement after the frequency is changed.<br>0 to 9,990 s or 0 to 9,999 cycles                                                                                      |

| Start delay<br>function              | This function delays the beginning of a mea-<br>surement only from the start of a sweep or<br>spot measurement.<br>0 to 9,990 s or 0 to 9,999 cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic<br>integration<br>function | This function repeats the integration process<br>until the variation in the measurement values<br>falls below a set value.<br>Setting : FIX, SHORT, MED, or LONG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Amplitude<br>compression             | This function automatically adjusts the oscillator output amplitude so that the amplitude of the signal input to the reference channel satisfies the target amplitude.<br>Target amplitude setting : 1 $\mu$ V to 600 Vrms Voltage limit for the oscillator : 1 mV to 10 Vpk Allowable error : 1 to 100%<br>Maximum number of retries : 1 to 9,999<br>Correction factor : 1 to 100%                                                                                                                                                                                                                                                                                                                             |
| Automatic<br>high density<br>sweep   | This function automatically increases the<br>sweep density in the region just before and<br>after a point where there is a large change in<br>the measurement data.<br>Variation : a, b, R (0 to 600 Vrms)<br>dBR (0 to 1000 dB)<br>Phase (0 to 180°)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sequence<br>measurement<br>function  | This function performs measurements<br>according to the content of a measurement<br>condition memory.<br>UP SWEEP<br>The first up sweep is performed over the<br>frequency range that is set in memory<br>number 1. The next up sweep is performed<br>over the range that is set in memory number<br>2, and so on continuously up to the upper<br>limit memory number.<br>DOWN SWEEP<br>The first down sweep is performed over the<br>range set in the memory number specified by<br>the upper limit memory number. The next<br>down sweep is performed over the range that<br>is set in the next lower memory number and so<br>on continuously down to memory number 1.<br>Upper limit memory number : 1 to 20 |

#### Analysis processing

| Di | splay unit                                                                                                                                                                                                                                                                                                                                                                   | Gain (ratio, unitless number) or impedance |                |               |               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|---------------|---------------|
| M  | Measurement accuracy                                                                                                                                                                                                                                                                                                                                                         |                                            |                |               |               |
|    | Fixed range                                                                                                                                                                                                                                                                                                                                                                  |                                            |                |               |               |
|    | Measurement                                                                                                                                                                                                                                                                                                                                                                  | accuracy = F                               | Relative accur | acy + Calibra | tion accuracy |
|    | Relative accu<br>± ( Basic accu                                                                                                                                                                                                                                                                                                                                              |                                            | nic accuracy + | Inter-range a | ccuracy × N ) |
|    | <ul> <li>± ( Basic accuracy + Dynamic accuracy + Inter-range accuracy × N )</li> <li>Calibration accuracy : The accuracy of external equipment that is connected to the instrument, such as a shunt resistor or probe, or the accuracy of the calibration standard equipment.</li> <li>Basic accuracy Upper : gain (ratio) ; Middle : impedance Z ; Lower : phase</li> </ul> |                                            |                |               |               |
|    | Measurement                                                                                                                                                                                                                                                                                                                                                                  |                                            | Frequ          | uency         |               |
|    | range (rms)                                                                                                                                                                                                                                                                                                                                                                  | ≤ 100 kHz                                  | ≤ 200 kHz      | ≤ 1 MHz       | ≤ 2 MHz       |
|    |                                                                                                                                                                                                                                                                                                                                                                              | ±0.2 dB                                    |                |               |               |
|    | 600 V                                                                                                                                                                                                                                                                                                                                                                        | ±2.4%                                      |                |               |               |
|    |                                                                                                                                                                                                                                                                                                                                                                              | ±1.2°                                      |                |               |               |
|    |                                                                                                                                                                                                                                                                                                                                                                              | ±0.1 dB                                    |                |               |               |
|    | 300 V                                                                                                                                                                                                                                                                                                                                                                        | ±1.2%                                      |                |               |               |
|    |                                                                                                                                                                                                                                                                                                                                                                              | ±0.6°                                      |                |               |               |
|    | ±0.05 dB                                                                                                                                                                                                                                                                                                                                                                     |                                            |                |               |               |
|    | 100 V                                                                                                                                                                                                                                                                                                                                                                        | ±0.58%                                     |                |               |               |
|    |                                                                                                                                                                                                                                                                                                                                                                              | ±0.3°                                      |                |               |               |
|    | 30 V                                                                                                                                                                                                                                                                                                                                                                         | ±0.0                                       | )1 dB          | ±0.025 dB     | ±0.1 dB       |
|    | to                                                                                                                                                                                                                                                                                                                                                                           | ±0.                                        | 12%            | ±0.29%        | ±1.2%         |
|    | 30 mV                                                                                                                                                                                                                                                                                                                                                                        | ±0.06°                                     |                | ±0.15°        | ±0.6°         |

## Frequency Response Analyzer FRA51615

#### Analysis processing (continued)

| Analysis pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ccooling (cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |
| range (rms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤ 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤ 15 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| 10 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±0.2 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ±0.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±2.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±5.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| 30 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±1.2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±3.0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| [ Conditions ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ]                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |
| [ Conditions ]<br>- At least 30 cy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cles of integra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| - Fixed measu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ange for both o                                                                                                                                                                                                                                                                                                                                      | channels.                                                                                                                                                                                                                                                                                      |
| - The gain, Z a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for both channe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| *For the cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      | urement is not                                                                                                                                                                                                                                                                                 |
| possible or th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nere is no accu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | racy specificat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion for it.                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                |
| Dynamic accu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uracy (excerp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ot) : Gain (ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o) / Impedance                                                                                                                                                                                                                                                                                                                                       | Z / Phase                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| $\leq 15 \text{ MHz and}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| [ Conditions ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| - At least 30 cyc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cles of integrat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| - Fixed measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |
| - Gain, Z and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                              |
| 1:0.1 between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ange to 1/10. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne input signai                                                                                                                                                                                                                                                                                                                                      | level is 1:1 or                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| Inter-range ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | curacy (exce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erpt) : Gain (ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atio) / Impedan                                                                                                                                                                                                                                                                                                                                      | ice Z / Phase                                                                                                                                                                                                                                                                                  |
| ≤ 100 kHz an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| $\leq$ 15 MHz and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| ≤ 100 kHz an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d 600 V rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e:±0.1 dB/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±1.2% / ±0.6                                                                                                                                                                                                                                                                                                                                         | 5°                                                                                                                                                                                                                                                                                             |
| [ Conditions ]<br>- At least 30 cyd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oloo of intograt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| - Fixed measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rror for when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      | ement range                                                                                                                                                                                                                                                                                    |
| - The gain, Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | etween chann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nels is 1, the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nput signal le                                                                                                                                                                                                                                                                                                                                       | evels of both                                                                                                                                                                                                                                                                                  |
| difference be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aund to the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | a lawal of the                                                                                                                                                                                                                                                                                 |
| difference be<br>channels are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equal, and e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | equal to the ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ange full scale                                                                                                                                                                                                                                                                                                                                      | e level of the                                                                                                                                                                                                                                                                                 |
| difference be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | equal to the ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ange full scale                                                                                                                                                                                                                                                                                                                                      | e level of the                                                                                                                                                                                                                                                                                 |
| difference be<br>channels are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | equal to the ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ange full scale                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| difference be<br>channels are<br>smaller range.<br>Auto-range                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                            | accuracy = F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relative accur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acy + Calibra                                                                                                                                                                                                                                                                                                                                        | tion accuracy                                                                                                                                                                                                                                                                                  |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu                                                                                                                                                                                                                                                                                                                                                                                                                           | accuracy = F<br>racy = ± ( Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relative accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acy + Calibra<br>v + Dynamic                                                                                                                                                                                                                                                                                                                         | tion accuracy                                                                                                                                                                                                                                                                                  |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac                                                                                                                                                                                                                                                                                                                                                                                                         | accuracy = F<br>racy = ± ( Ba<br>curacy : The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relative accuracy<br>asic accuracy<br>accuracy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acy + Calibra<br>/ + Dynamic<br>external equi                                                                                                                                                                                                                                                                                                        | tion accuracy<br>accuracy )<br>pment that is                                                                                                                                                                                                                                                   |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected                                                                                                                                                                                                                                                                                                                                                                                            | accuracy = F<br>racy = ± ( Ba<br>curacy : The<br>to the instrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acy + Calibra<br>r + Dynamic<br>external equi<br>a shunt resis                                                                                                                                                                                                                                                                                       | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,                                                                                                                                                                                                                                 |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accu                                                                                                                                                                                                                                                                                                                                                                             | accuracy = F<br>racy = ± ( Ba<br>ccuracy : The<br>to the instrun<br>racy of the ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as<br>alibration star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acy + Calibra<br>/  +  Dynamic<br>external equi<br>a shunt resis<br>ndard equipm                                                                                                                                                                                                                                                                     | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>pent.                                                                                                                                                                                                                        |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected                                                                                                                                                                                                                                                                                                                                                                                            | accuracy = F<br>racy = ± ( Ba<br>ccuracy : The<br>to the instrun<br>racy of the ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as<br>alibration star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acy + Calibra<br>r  +  Dynamic<br>external equi<br>a shunt resis<br>ndard equipm<br>: impedance Z                                                                                                                                                                                                                                                    | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>pent.                                                                                                                                                                                                                        |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level                                                                                                                                                                                                                                                                                                                                          | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Frequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acy + Calibra<br>( + Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>uency                                                                                                                                                                                                                                            | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase                                                                                                                                                                                                     |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accuracy                                                                                                                                                                                                                                                                                                                                                                         | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as<br>alibration star<br>(ratio) ; Middle<br>Frequ<br>≤ 200 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | acy + Calibra<br>v  +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>uency<br>≤ 1 MHz                                                                                                                                                                                                                               | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>hent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$                                                                                                                                                                             |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuracy<br>Signal level<br>(rms)                                                                                                                                                                                                                                                                                                                                 | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>≤ 200 kHz<br>±0.02 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acy + Calibra<br>v   +  Dynamic<br>external equi<br>a shunt resis<br>ndard equipm<br>: impedance Z<br>uency<br>≤ 1 MHz<br>±0.05 dB                                                                                                                                                                                                                   | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$                                                                                                                                                     |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level                                                                                                                                                                                                                                                                                                                                          | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as<br>alibration star<br>(ratio) ; Middle<br>Frequ<br>≤ 200 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | acy + Calibra<br>v  +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>uency<br>≤ 1 MHz                                                                                                                                                                                                                               | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuracy<br>Signal level<br>(rms)                                                                                                                                                                                                                                                                                                                                 | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Relative accura<br>asic accuracy<br>accuracy of<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>≤ 200 kHz<br>±0.02 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acy + Calibra<br>v   +  Dynamic<br>external equi<br>a shunt resis<br>ndard equipm<br>: impedance Z<br>uency<br>≤ 1 MHz<br>±0.05 dB                                                                                                                                                                                                                   | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$                                                                                                                                                     |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V                                                                                                                                                                                                                                                                                                                          | accuracy = F<br>racy = $\pm$ ( Ba<br>couracy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB<br>$\pm$ 0.24%<br>$\pm$ 0.12°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relative accuracy<br>asic accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>requ<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accu<br>Basic accuracy<br>Signal level<br>(rms)<br>7 V<br>Signal level                                                                                                                                                                                                                                                                                                           | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relative accuracy<br>asic accuracy of onent, such as alibration star<br>(ratio); Middle<br>requ<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V                                                                                                                                                                                                                                                                                                                          | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                               | Relative accuracy<br>accuracy of a<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Erequ<br>≤ 200 kHz<br>±0.02 dB<br>±0.24%<br>±0.12°<br>uency<br>≤ 15 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)                                                                                                                                                                                                                                                                                                 | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB<br>$\pm$ 0.24%<br>$\pm$ 0.12°<br>Frequ<br>$\leq$ 5 MHz<br>$\pm$ 0.2 dB                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relative accuracy<br>accuracy of a<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>≤ 200 kHz<br>±0.02 dB<br>±0.24%<br>±0.24%<br>±0.12°<br>Jency<br>≤ 15 MHz<br>±0.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accu<br>Basic accuracy<br>Signal level<br>(rms)<br>7 V<br>Signal level                                                                                                                                                                                                                                                                                                           | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB<br>$\pm$ 0.24%<br>$\pm$ 0.12°<br>Frequ<br>$\leq$ 5 MHz<br>$\pm$ 0.2 dB<br>$\pm$ 0.2 dB<br>$\pm$ 0.2 dB<br>$\pm$ 0.2 dB                                                                                                                                                                                                                                                                                                                                                                                               | Relative accuracy<br>accuracy of a<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>$\leq 200 \text{ kHz}$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 0.5 \text{ dB}$<br>$\pm 5.9\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected o<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V                                                                                                                                                                                                                                                                                        | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB<br>$\pm$ 0.24%<br>$\pm$ 0.12°<br>Frequ<br>$\leq$ 5 MHz<br>$\pm$ 0.2 dB                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relative accuracy<br>accuracy of a<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>≤ 200 kHz<br>±0.02 dB<br>±0.24%<br>±0.24%<br>±0.12°<br>Jency<br>≤ 15 MHz<br>±0.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected f<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]                                                                                                                                                                                                                                                                      | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB<br>$\pm$ 0.24%<br>$\pm$ 0.12°<br>Frequ<br>$\leq$ 5 MHz<br>$\pm$ 0.2 dB<br>$\pm$ 2.4%<br>$\pm$ 1.2°                                                                                                                                                                                                                                                                                                                                                                                                                   | Relative accuracy<br>asic accuracy of<br>nent, such as<br>alibration star<br>(ratio); Middle<br>Erequ<br>$\pm 0.02 dB$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Lency<br>$\leq 15 MHz$<br>$\pm 0.5 dB$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurace<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V                                                                                                                                                                                                                                                                                          | accuracy = F<br>racy = $\pm$ ( Ba<br>couracy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq$ 100 kHz<br>$\pm$ 0.02 dB<br>$\pm$ 0.24%<br>$\pm$ 0.12°<br>Frequ<br>$\leq$ 5 MHz<br>$\pm$ 0.2 dB<br>$\pm$ 2.4%<br>$\pm$ 1.2°                                                                                                                                                                                                                                                                                                                                                                                                                  | Relative accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 0.5 \text{ dB}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acy + Calibra<br>1 +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$                                                                                                                                                                          | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$                                                                                                                                      |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V                                                                                                                                                                                                                                                                                          | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>ycles of integra<br>proboth channe                                                                                                                                                                                                                                                                                                                      | Relative accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>$\leq 200$ kHz<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15$ MHz<br>$\pm 0.5$ dB<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acy + Calibra<br>(  +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>uency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°                                                                                                                                                                                                | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$                                                                                                                 |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurace<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V                                                                                                                                                                                                                                                                                          | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>vcles of integra<br>or both channe<br>and phase error                                                                                                                                                                                                                                                                                                          | Relative accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>Frequ<br>$\leq 200$ kHz<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15$ MHz<br>$\pm 0.5$ dB<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acy + Calibra<br>(  +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>uency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°                                                                                                                                                                                                | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$                                                                                                                 |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuracy<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- The gain,Z ar<br>for both char                                                                                                                                                                                                                | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>vcles of integraph<br>or both channe<br>and phase error<br>nels.                                                                                                                                                                                                                                                                                                        | Relative accuracy<br>asic accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>Erequ<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>$\pm 0.5 \text{ dB}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acy + Calibra<br>( +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>Jency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°                                                                                                                                                                                                 | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$                                                                                                                 |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurac;<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char                                                                                                                                                                                             | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>ycles of integra<br>or both channe<br>and phase error<br>nels.                                                                                                                                                                                                                                                                                                 | Relative accuracy<br>asic accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>zency<br>$\leq 15 \text{ MHz}$<br>$\pm 0.5 \text{ dB}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>ation<br>els<br>for when the inertial statement of the statement of th                                                                                 | acy + Calibra<br>/ +  Dynamic<br>external equi<br>i a shunt resis<br>indard equipm<br>: impedance Z<br>iency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°                                                                                                                                                                                               | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$                                                                                                                 |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurac;<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char                                                                                                                                                                                             | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>vcles of integra<br>or both channe<br>and phase error<br>nels.                                                                                                                                                                                                                                                                                                 | Relative accuracy<br>asic accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>Ation<br>els<br>r for when the inentity of 30 Vrms t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acy + Calibra<br>/ +  Dynamic<br>external equi<br>i a shunt resis<br>indard equipm<br>: impedance Z<br>iency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°                                                                                                                                                                                               | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$                                                                                                                 |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurac:<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char<br>Dynamic accu                                                                                                                                                                             | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>vcles of integra<br>or both channe<br>and phase error<br>nels.<br>uracy (excerp<br>d signal level<br>$1.2\% / \pm 0.6^{\circ}$                                                                                                                                                                                                                                 | Relative accuracy<br>asic accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>ation<br>els<br>for when the inentity of 30 Vrms t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acy + Calibra<br>( +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>iency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°<br>input signal lev<br>b) / Impedance<br>o 600 Vrms :                                                                                                                                           | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>≤ 2 MHz<br>±0.1 dB<br>±1.2%<br>±0.6°                                                                                                                                                             |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurac;<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and                                                                                                                              | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>ycles of integra<br>or both channe<br>and phase error<br>nels.<br>uracy (excerp<br>d signal level<br>$1.2\% / \pm 0.6^{\circ}$<br>d signal level                                                                                                                                                                                               | Relative accuracy<br>asic accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>zency<br>$\leq 15 \text{ MHz}$<br>$\pm 0.5 \text{ dB}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>Attion<br>els<br>r for when the interval of 30 Vrms t<br>of 100 mVrm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acy + Calibra<br>( +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>iency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°<br>input signal lev<br>b) / Impedance<br>o 600 Vrms :                                                                                                                                           | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>≤ 2 MHz<br>±0.1 dB<br>±1.2%<br>±0.6°                                                                                                                                                             |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accu<br>Basic accurac;<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±                                                                                                                | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>vcles of integra<br>or both channe<br>and phase error<br>nels.<br>uracy (excerp<br>d signal level<br>$1.2\% / \pm 0.6^{\circ}$                                                                                                                                                                                                                                 | Relative accuracy<br>asic accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>zency<br>$\leq 15 \text{ MHz}$<br>$\pm 0.5 \text{ dB}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>Attion<br>els<br>r for when the interval of 30 Vrms t<br>of 100 mVrm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acy + Calibra<br>( +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>iency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°<br>input signal lev<br>b) / Impedance<br>o 600 Vrms :                                                                                                                                           | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>≤ 2 MHz<br>±0.1 dB<br>±1.2%<br>±0.6°                                                                                                                                                             |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurac;<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range for<br>5 The gain,2 au<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±<br>[ Conditions ]                                                                                            | accuracy = F<br>racy = $\pm$ ( Ba<br>racy = $\pm$ ( Ba<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 1.2^{\circ}$<br>(cles of integrator<br>or both channes<br>and phase error<br>nels.<br>Uracy (excerption<br>d signal level<br>$6.0\% / \pm 3.0^{\circ}$                                                                                                                                                                                                                           | Relative accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>requ\$ 200 kHz\$ 200 kHz\$ 200 kHz\$ 10.02 dB\$ 200 kHz\$ 10.24%\$ 10.24%\$ 200 kHz\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.24%\$ 10.26%<br>\$ 10.26%\$ 10.26%\$ 10.26%<br>\$ 10.26%\$ 10.26%\$ 10.26%<br>\$ 10.26%\$ 10.26%\$ 10.26%<br>\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%<br>\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%<br>\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26%\$ 10.26 | acy + Calibra<br>( +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>iency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°<br>input signal lev<br>b) / Impedance<br>o 600 Vrms :                                                                                                                                           | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>≤ 2 MHz<br>±0.1 dB<br>±1.2%<br>±0.6°                                                                                                                                                             |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accu<br>Basic accurac;<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±                                                                                                                | accuracy = F<br>racy = $\pm$ ( Ba<br>racy = $\pm$ ( Ba<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>(cles of integra<br>or both channe<br>of phase error<br>nels.<br>uracy (excerp<br>d signal level<br>$6.0\% / \pm 3.0^{\circ}$<br>cles of integrat                                                                                                                                                                                                         | Relative accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.5 dB$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>ation<br>els<br>for when the inent of a start                                                                                              | acy + Calibra<br>( +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>iency<br>≤ 1 MHz<br>±0.05 dB<br>±0.58%<br>±0.3°<br>input signal lev<br>b) / Impedance<br>o 600 Vrms :                                                                                                                                           | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>≤ 2 MHz<br>±0.1 dB<br>±1.2%<br>±0.6°                                                                                                                                                             |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±<br>[ Conditions ]<br>- At least 30 cyc<br>- Auto-range fo<br>- The gain,Z an                                                                                   | accuracy = F<br>racy = $\pm$ ( Ba<br>couracy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>vcles of integra<br>or both channel<br>and phase error<br>nels.<br>uracy (excerp<br>d signal level<br>$1.2\% / \pm 0.6^{\circ}$<br>d signal level<br>$6.0\% / \pm 3.0^{\circ}$<br>cles of integrat<br>r both channel<br>and phase varia                                                                                                                       | Relative accuracy<br>asic accuracy of onent, such as alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>Ation<br>and the start of the start                                                                                               | acy + Calibra<br>$i' +  Dynamic external equip i a shunt resis indard equipm : impedance Z \pm 0.05 \text{ dB}\pm 0.58\%\pm 0.3^{\circ}input signal leveb) / Impedanceo 600 Vrms :ins to 20 Vrms$                                                                                                                                                    | tion accuracy<br>accuracy )<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$<br>vel is the same<br>$\approx Z / \text{Phase}$                                                                |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accu<br>Basic accurac:<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z an<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>greater signal                  | accuracy = F<br>racy = $\pm$ ( Ba<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 1.2^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>ycles of integra<br>or both channel<br>and phase error<br>nels.<br>uracy (excerp<br>d signal level<br>$1.2\% / \pm 0.6^{\circ}$<br>d signal level<br>$6.0\% / \pm 3.0^{\circ}$<br>cles of integrat<br>r both channel<br>and phase varia<br>level channel                                                                                 | Relative accuracy<br>asic accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>Ation<br>els<br>for when the inential<br>of 100 mVrm<br>constant<br>of 100 mVrm<br>constant<br>ation for when<br>changes from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acy + Calibra<br>i +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$<br>$\pm 0.3^{\circ}$<br>input signal leve<br>o 600 Vrms :<br>ins to 20 Vrms<br>input signal I                                                                                                             | tion accuracy<br>accuracy[)<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$<br>vel is the same<br>$\approx Z / \text{Phase}$                                                                |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accu<br>Basic accurac:<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z an<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>greater signal                  | accuracy = F<br>racy = $\pm$ ( Ba<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 0.24\%$<br>$\pm 1.2^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>ycles of integra<br>or both channel<br>and phase error<br>nels.<br>uracy (excerp<br>d signal level<br>$1.2\% / \pm 0.6^{\circ}$<br>d signal level<br>$6.0\% / \pm 3.0^{\circ}$<br>cles of integrat<br>r both channel<br>and phase varia<br>level channel                                                                                 | Relative accuracy<br>asic accuracy of onent, such as alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>Ation<br>and the start of the start                                                                                               | acy + Calibra<br>i +  Dynamic<br>external equi<br>a shunt resis<br>indard equipm<br>: impedance Z<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$<br>$\pm 0.3^{\circ}$<br>input signal leve<br>o 600 Vrms :<br>ins to 20 Vrms<br>input signal I                                                                                                             | tion accuracy<br>accuracy[)<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$<br>vel is the same<br>$\approx Z / \text{Phase}$                                                                |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accuract<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[ Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±<br>[ Conditions ]<br>- At least 30 cy<br>auto-range fo<br>- The gain,Z ar<br>greater signal<br>when the inpur | accuracy = F<br>racy = $\pm$ ( Ba<br>racy = $\pm$ ( Ba<br>racy of the instrum<br>racy of the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br><i>y</i> cles of integra<br>or both channel<br>and phase error<br>nels.<br><i>u</i> racy (excerp<br>d signal level<br>$6.0\% / \pm 3.0^{\circ}$<br>cles of integrat<br>r both channel<br>and phase varia<br>level channel<br>in level channel<br>in level channel<br>in level channel<br>in level channel<br>in level channel | Relative accuracy<br>asic accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$\leq 200 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Jency<br>$\leq 15 \text{ MHz}$<br>$\pm 5.9\%$<br>$\pm 3.0^{\circ}$<br>Ation<br>els<br>for when the inential<br>of 100 mVrm<br>constant<br>of 100 mVrm<br>constant<br>ation for when<br>changes from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acy + Calibra<br>$r  +  Dynamic external equipm : impedance Z jency \leq 1 \text{ MHz}\pm 0.05 \text{ dB}\pm 0.58\%\pm 0.3^{\circ}input signal leveo 600 Vrms :as to 20 Vrmsa input signal I7 Vrms to theel is 1:1 or 1:0.$                                                                                                                          | tion accuracy<br>accuracy[)<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$<br>vel is the same<br>z Z / Phase<br>z = 2 / Phase                                                              |
| difference be<br>channels are<br>smaller range.<br>Auto-range<br>Measurement<br>Relative accu<br>Calibration ac<br>connected<br>or the accur<br>Basic accurace<br>Signal level<br>(rms)<br>7 V<br>Signal level<br>(rms)<br>7 V<br>[Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>for both char<br>Dynamic accu<br>≤ 100 kHz an<br>±0.1 dB / ±<br>≤ 15 MHz and<br>±0.5 dB / ±<br>[Conditions ]<br>- At least 30 cy<br>- Auto-range fo<br>- The gain,Z ar<br>greater signal<br>when the input | accuracy = F<br>racy = $\pm$ ( Ba<br>curacy : The<br>to the instrum<br>racy of the ca<br>y Upper : gain<br>$\leq 100 \text{ kHz}$<br>$\pm 0.02 \text{ dB}$<br>$\pm 0.24\%$<br>$\pm 0.12^{\circ}$<br>Frequ<br>$\leq 5 \text{ MHz}$<br>$\pm 0.2 \text{ dB}$<br>$\pm 2.4\%$<br>$\pm 1.2^{\circ}$<br>vcles of integra<br>or both channel<br>and phase error<br>nels.<br>Uracy (excerp<br>d signal level<br>$1.2\% / \pm 0.6^{\circ}$<br>d signal level<br>$6.0\% / \pm 3.0^{\circ}$<br>cles of integrat<br>r both channel<br>and phase varia<br>level channel<br>and phase varia<br>level channel<br>and phase varia                                                | Relative accuracy<br>accuracy of onent, such as<br>alibration star<br>(ratio); Middle<br>$Frequ\pm 0.02 \text{ dB}\pm 0.24\%\pm 0.24\%\pm 0.12^{\circ}Jency\leq 15 \text{ MHz}\pm 0.5 \text{ dB}\pm 5.9\%\pm 3.0^{\circ}ationbisr for when the inentof 100 mVrmcions ation for whenchanges frombetween channe$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acy + Calibra<br>r  +  Dynamic<br>external equip<br>i a shunt resis<br>indard equip<br>: impedance Z<br>Jency<br>$\leq 1 \text{ MHz}$<br>$\pm 0.05 \text{ dB}$<br>$\pm 0.58\%$<br>$\pm 0.3^{\circ}$<br>input signal leve<br>b) / Impedance<br>o 600 Vrms :<br>ins to 20 Vrms<br>input signal I<br>7 Vrms to the<br>el is 1:1 or 1:0.<br>ement errors | tion accuracy<br>accuracy[)<br>pment that is<br>stor or probe,<br>nent.<br>; Lower : phase<br>$\leq 2 \text{ MHz}$<br>$\pm 0.1 \text{ dB}$<br>$\pm 1.2\%$<br>$\pm 0.6^{\circ}$<br>vel is the same<br>$\approx 2 \text{ / Phase}$<br>$\approx 2 \text{ / Phase}$<br>$\approx 2 \text{ / Phase}$ |

| V Gain                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis modes                               | Ratio : CH1/CH2, CH2/CH1<br>Amplitude : CH1, CH2                                                                                                                                                                                                                                                                                                                                                                                       |
| Graph types                                  | Bode plot, Nyquist plot, Nichols plot                                                                                                                                                                                                                                                                                                                                                                                                  |
| Measurement<br>items                         | dBR (gain dB), θ (phase), GD (group delay),<br>R (absolute gain/amplitude), a (real part of<br>gain/real part of amplitude), b (imaginary part<br>of gain/imaginary part of amplitude)                                                                                                                                                                                                                                                 |
| Error correction<br>function<br>(Equalizing) | Measuring the frequency characteristics of the measurement system (sensors, cables, etc.) in advance and then eliminate that error component.                                                                                                                                                                                                                                                                                          |
| Impedance                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Voltage and current input                    | Voltage is measured as the measurement<br>amplitude at CH1 and current is measured as<br>the measurement amplitude at CH2.                                                                                                                                                                                                                                                                                                             |
| Analysis modes                               | Impedance : CH1/CH2<br>Admittance : CH2/CH1<br>Voltage : CH1<br>Current : CH2                                                                                                                                                                                                                                                                                                                                                          |
| Graph types                                  | Bode plot, Nyquist plot, Cole-cole plot                                                                                                                                                                                                                                                                                                                                                                                                |
| Measurement<br>items                         | Z (impedance)<br>R, X (resistance, reactance)<br>Y (admittance)<br>G, B (conductance, susceptance)                                                                                                                                                                                                                                                                                                                                     |
|                                              | Ls, Lp (inductance)<br>Cs, Cp (capacitance)<br>Rs, Rp (resistance)<br>V (voltage)<br>I (current)<br>θ (phase)<br>D (dissipation factor)<br>Q (quality factor)                                                                                                                                                                                                                                                                          |
| Error correction<br>function                 | Open correction<br>Short correction<br>Load correction<br>Load standard value : Standard values can<br>be entered for up to 10 frequency points.<br>Port extension :<br>Corrects the error due to phase delay in<br>cables for 2-port measurements.<br>Slope compensation<br>This function performs analysis that is<br>unaffected by the DC level for signals that<br>have a superimposed DC level that varies<br>linearly over time. |
| Display<br>Display unit                      | 8.4-inch color TFT-LCD (SVGA)                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                              | with touch screen                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Graph display<br>styles                      | SINGLE : One graph is displayed on the screen.<br>SPLIT : Two graphs are displayed on the screen,<br>one above the other.                                                                                                                                                                                                                                                                                                              |
| Data traces                                  | Reference data trace (REF)<br>Measurement data trace (MEAS)                                                                                                                                                                                                                                                                                                                                                                            |
| Auto scaling                                 | This function automatically optimizes the graph display scale.(on or off)                                                                                                                                                                                                                                                                                                                                                              |
| Marker display                               | Main marker, Delta marker                                                                                                                                                                                                                                                                                                                                                                                                              |
| Marker search function                       | Search items<br>Max, Min : The maximum and minimum values<br>Peak, Bottom : The peak (maximal) and the                                                                                                                                                                                                                                                                                                                                 |

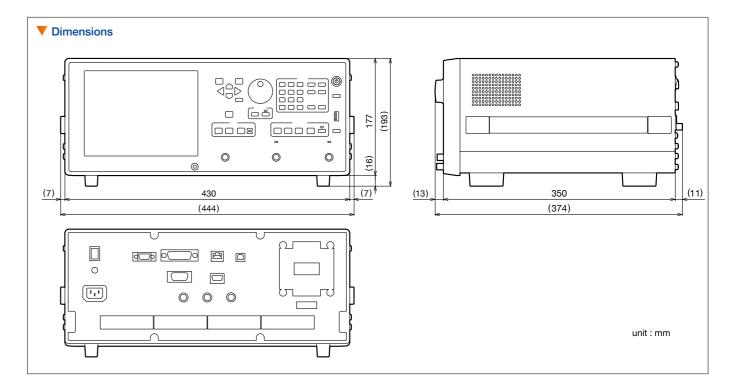
bottom (minimal) values NextPeak : The next peak NextBottom : The next bottom Value : The marker value

and the main marker values

the end of a sweep measurement.

X Value : Frequency

ΔValue : The difference between the delta marker


\*It is possible to automatically perform a search at

| Memory                     |                                                                                                                                                                          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement<br>data (MEAS) | The data from the sweep measurement<br>Up to 20 sets of data can be stored in internal<br>memory.                                                                        |
| Reference data<br>(REF)    | Data that can be displayed on a graph<br>together with the measurement data (MEAS).<br>This can be measurement data or data<br>loaded from a USB memory device. (on/off) |
| Error correction data      | Open correction, Short correction,<br>Load correction, Equalize                                                                                                          |
| Measurement conditions     | 20 sets                                                                                                                                                                  |
| Data retention             | Except for data that is not stored in internal memory yet, measurement data is retained, even if the power is turned off.                                                |

| <b>External memo</b>    | ry                                                                  |
|-------------------------|---------------------------------------------------------------------|
| Media                   | USB memory device                                                   |
| Connections             | Front panel, USB-A                                                  |
| File system             | FAT                                                                 |
| Screen capture function | MS Windows bitmap file<br>(extension : .BMP, image size: 800 × 600) |

#### External input/output function

| Interface        | GPIB : Standards conformance ; IEEE488.1 and<br>IEEE488.2<br>USB : USB 2.0 HighSpeed<br>LAN : 10/100Base-T<br>RS-232 : Baud rate 4800 to 230400 bps |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| External monitor | Connector : VGA (mini D-sub15 pin, female)<br>Signal : 800 × 600 pixels (SVGA), analog RGB<br>component video signal                                |



| Reference clock input     | Frequency : 10 MHz ±100 ppm or under<br>Input waveform : Sinusoidal or square<br>Input voltage : 0.5 Vp-p to 5 Vp-p                                                                                                              |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Reference clock<br>output | Output impedance : $50 \Omega$ (nominal), AC coupling<br>Frequency : $10 \text{ MHz} \pm 10 \text{ ppm}$<br>(when operating on the internal reference clock)<br>Output waveform : $1 \text{ Vp-p} / 50 \Omega$ , square waveform |  |
| DC power output           | Power supply outlet that is used by the<br>"5055 SIGNAL INJECTOR PROPE" (option)<br>Connector : Rear panel, AUX<br>Output voltage : Approximately ±24 V                                                                          |  |

| Viscellaneous specifications |                                                               |  |  |
|------------------------------|---------------------------------------------------------------|--|--|
| Power input                  | Voltage : AC 100 V to 230 V ±10%,                             |  |  |
|                              | 250 V or less                                                 |  |  |
|                              | Frequency : 50 Hz/60 Hz ±2 Hz                                 |  |  |
| Power consumption            | 100 VA or less                                                |  |  |
| Range of ambient             | +5 °C to +40°C, 5 to 85% RH                                   |  |  |
| temperature and humidity     | (absolute humidity 1 to 25 g/m <sup>3</sup> , no condensation |  |  |
| Dimensions                   | 430 mm (W) × 177 mm (H) × 350 mm (D)                          |  |  |
|                              | (excluding protruding parts)                                  |  |  |
| Weight                       | Approximately 8.5 kg                                          |  |  |
| Accessories                  | Instruction Manual (operation and remote control)             |  |  |
|                              | Power Cord Set (2 m, with three-pin plug)                     |  |  |
|                              | Signal Cables (BNC-BNC, 50 Ω, 1 m, 600 V CAT II) ×3           |  |  |
|                              | Calibration Cables (BNC-BNC, 50 Ω, 20 cm) ×2                  |  |  |
|                              | BNC Adapter (600 V CAT II)                                    |  |  |

#### Options

| MODEL       | NAME                                                                 | NOTE                 |
|-------------|----------------------------------------------------------------------|----------------------|
| 5055        | SIGNAL INJECTOR PROBE                                                | Limit to ±11 V       |
| PA-001-0368 | IMPEDANCE MEASUREMENT ADAPTER*1                                      |                      |
| PA-001-0369 | LOOP GAIN MEASUREMENT ADAPTER*1                                      |                      |
| PA-001-1840 | HI-POWER IMPEDANCE MEASUREMENT ADAPTER $(1 \Omega)^{*2}$             |                      |
| PA-001-1841 | HI-POWER IMPEDANCE MEASUREMENT ADAPTER (100 $\Omega$ )* <sup>2</sup> |                      |
| PA-001-1838 | TEST FIXTURE ADAPTER (1 $\Omega$ )*1                                 |                      |
| PA-001-1839 | TEST FIXTURE ADAPTER $(100 \Omega)^{*1}$                             |                      |
| PA-001-0370 | SHUNT RESISTOR*2                                                     |                      |
| PA-001-3746 | HIGH WITHSTAND VOLTAGE CLIP CABLE SET (3 PER SET)                    |                      |
| PA-001-0420 | HIGH WITHSTAND VOLTAGE ALLIGATOR CLIP CABLE SET (SMALL) (3 PER SET)  | 300 V CAT II or less |
| PA-001-0421 | HIGH WITHSTAND VOLTAGE ALLIGATOR CLIP CABLE SET (LARGE) (3 PER SET)  |                      |
| PA-001-0422 | ALLIGATOR CLIP CABLE SET (3 PER SET)*1                               |                      |
| PA-001-3058 | HIGH WITHSTAND VOLTAGE BNC EXTENSION CABLE SET (15 cm, 3 CABLES)     |                      |
| PC-007-0364 | HIGH WITHSTAND VOLTAGE EXTENSION BNC CABLE (1 m)                     |                      |
| PA-001-3059 | HIGH WITHSTAND VOLTAGE BNC CABLE SET (20 cm, 2 CABLES)               | For maintenance      |
| PC-001-4503 | HIGH WITHSTAND VOLTAGE BNC ADAPTER (T-BRANCH)                        | For maintenance      |
| PC-002-3347 | HIGH WITHSTAND VOLTAGE BNC CABLE                                     | For maintenance      |
| PC-007-1490 | IMPEDANCE MEASUREMENT ADAPTER KELVIN CLIP                            | For maintenance      |
| PC-007-1922 | LOOP GAIN MEASUREMENT CLIP                                           | For maintenance      |
| PA-001-3036 | RACK MOUNT KIT (EIA)                                                 |                      |
| PA-001-3037 | RACK MOUNT KIT (JIS)                                                 |                      |

\*1 Safe operation of the instrument requires that the potential difference from the grounding potential is restricted to 42 Vpk or less.

\*2 No MEASUREMENT CATEGORY, Circuits not intended to be directly connected to the mains

#### Peripheral equipment

#### 5055

SIGNAL INJECTOR PROBE



An auxiliary unit to measure the loop response of a servo system or the like with closed loops.

#### **PA-001-1840** (1 Ω)/ **PA-001-1841** (100 Ω) HI-POWER IMPEDANCE MEASUREMENT ADAPTER



Combine with a bipolar amplifier to measure impedance at the actual operating voltage.

• Built-in shunt resistor : 1  $\Omega$  / 100  $\Omega$ 

#### PA-001-0368 IMPEDANCE MEASUREMENT ADAPTER

An adapter to measure the impedance. The shunt resistors for current detection  $(1 \Omega, 10 \Omega, 100 \Omega)$  are built-in.

**PA-001-1838** (1 Ω)/ **PA-001-1839** (100 Ω) TEST FIXTURE ADAPTER



Can be connected to test fixtures for LCR meters

• Built-in shunt resistor : 1  $\Omega$ /100  $\Omega$ 

#### PA-001-0369

LOOP GAIN MEASUREMENT ADAPTER



An adapter to measure the loop gain of a negative feedback circuit in operation.

PA-001-0370 SHUNT RESISTOR



A shunt resistor incorporating a 1  $\Omega$ 4-terminal resistor, used to detect a current (1 Arms maximum) flowing through a DUT.

Note : The contents of this catalog are current as of November 6th, 2024 Products appearance and specifications are subject to change without notice. •Before purchase contact us to confirm the latest specifications, price and delivery date.

## **NF** Corporation

#### Head Office

6-3-20 Tsunashima Higashi, Kohoku-ku, Yokohama 223-8508, Japan Phone: +81-45-545-8128 Fax: +81-45-545-8187 http://www.nfcorp.co.jp/english/